
Thread-Aware Garbage Collection for Server Applications

Woo Jin Kim, Kyungbaek Kim, Jaesun Han, Keuntae Park and Daeyeon Park
Department of Electrical Engineering & Computer Science

Korea Advanced Institute of Science and Technology (KAIST)
Daejeon, Korea

wjkim,kbkim,jshan,ktpark@sslab.kaist.ac.kr, daeyeon@ee.kaist.ac.kr

Abstract

In recent years server applications using Java become
popular. However, they have different performance require-
ments from other applications: high throughput and small
response time. One of obstacles for achieving those require-
ments is a Java Virtual Machine (JVM). Among the services
that a JVM provides, garbage collection affects server ap-
plications in throughput and latency. Some JVMs have var-
ious garbage collectors for server-side Java but they do not
still consider the behavior of server applications.

We show that the lifetime pattern of objects is distin-
guished by the thread that allocates them in server applica-
tions. Separating objects and applying different collection
policies according to threads, we propose that a garbage
collector can achieve both high throughput and small pause
time. Experiments show that the throughput of our collector
is up to 1.7 times greater than that of previous generational
collectors with the same pause time and the pause time of
minor collection is smaller by almost 10% given the same
throughput.

1. Introduction

Recently, Java server applications have become increas-
ingly popular. Some of the examples are JavaServer
PagesTM (JSP) and Enterprise JavaBeansTM (EJB) [13].
However, they have different performance requirements
from other applications. Two important requirements are
high throughput and small response time. That is, a server
application should service as many requests as possible and
deliver a response as soon as possible. The Internet explo-
sion has led to a rapid increase in the number of users so
that achieving these requirements becomes more difficult.

One of obstacles preventing server applications from sat-
isfying these requirements is a Java Virtual Machine (JVM).
A traditional JVM is based on technology that has origi-
nated from desktop computer environments such as a single

processor. Garbage collectors in the JVM usually use only
one processor and stop applications during garbage collec-
tion, which is inefficient for server computing environment
such as multiprocessors. During garbage collection, only
one processor is used for garbage collection and requests
being processed before the collection should wait for the
end of garbage collection. In result it drops throughput and
increases response time of server applications.

Some JVMs such as the Java Hotspot Virtual Machine,
v1.4.1 [12] and BEA Weblogic JRockit [4] aim for high
performance server-side JVMs. The JVMs have some fea-
tures to support server applications, such as adaptive opti-
mizing compiler and parallel garbage collector or concur-
rent garbage collector. The parallel garbage collector uses
all processors available to achieve both high throughput and
small pause time, and the concurrent garbage collector per-
forms while applications are running, which leads to high
degrees of parallelism and non-disruptiveness. They are,
however, only adapted to the server environment and do not
consider the behavior of server applications.

The architecture and behavior of server applications dif-
fer from those of other applications. In Figure 1, a typical
server application is based on multi-thread model, which
uses many threads to handle requests from network. Each
thread has its own role. The dispatcher thread in the figure is
a main thread and keeps a pool of worker threads. It receives
a request and passes it to one of worker threads. Then the
worker thread processes the request and sends a response
to the client. Observing the behavior of threads, there are
some characteristics to distinguish one kind of threads from
another kind. The dispatcher thread lasts to the end of run-
ning and manages overall processing of a server application
and the worker thread makes objects related to a request and
then makes other objects for the next request. From this
point of view, objects that the worker thread uses can be re-
garded as temporal objects, and objects that the dispatcher
thread makes live longer than those of worker threads. If
a garbage collector knows the lifetime of an object, it can
collect the object efficiently by concentrating on collecting

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

Figure 1. The architecture of a server applica-
tion

short-lived objects. An example for that approach is a gen-
erational collector, which focuses on newly created objects
that have a much lower survival rate than older objects [14],
[9] . If it distinguishes which newly created object lives
short or long, the efficiency can be improved further.

In our idea, the classification is based on the thread that
allocates the object. Our collector applies different poli-
cies for the allocation and collection of objects according to
threads. The policy we used for worker threads is to allo-
cate their objects in a large nursery, which can be collected
quickly because there are few live objects in the nursery; In
result, it leads to high throughput, the amount of reclaimed
memory space per a unit garbage collection time. On the
other hand, the policy for main threads is to allocate ob-
jects in a small nursery. Collecting the nursery takes pro-
portional time to the size of the nursery because the amount
of live objects increases proportional to the size of the nurs-
ery. Therefore the size should be small to achieve small
pause time. Applying different collection policies to ob-
jects according to the thread that created them, both high
throughput and small pause time are achieved.

For our experiments, we use the Jikes Research Virtual
Machine (RVM) [2] . It provides basic generational copy-
ing collectors with fixed size nursery and one with variable
size nursery. Modifying these collectors we implemented
the ’Thread-aware collector’ to prove the hypothesis for the
server behavior presented above and to evaluate the effect
of exploiting the behavior. Using a web server based on the
Staged Event-Driven Architecture (SEDA) [15] as a bench-
mark server, the experiments show that the throughput of
thread-aware collector is up to 1.7 times greater than that of
basic collectors while the pause time of minor collection is
almost the same. In addition, the pause time of minor col-
lection is smaller by almost 10% on the condition of similar
throughput.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces basic generational collectors in Jikes RVM
in short and Section 3 explains our idea based on the behav-
ior of server applications. Section 4 shows our experiment
environment and results. Section 5 presents related works
and Section 6 concludes.

2. Background

In the Jikes RVM [2] , there are two generational copy-
ing collectors. One is with fixed size nursery (Fixed nursery
collector or FN collector) and the other is with variable size
nursery (Variable nursery collector or VN collector). The
latter is also known as the Appel style generational collec-
tor [3] and its nursery is set to the maximum as much as
possible.

There are two performance parameters of garbage col-
lection: throughput and collection time. The collection
time, the time taken for a minor or major collection, is pro-
portional to the amount of live objects that are traced and
copied. The collection time of minor collection is generally
proportional to the size of a nursery because there are more
live objects in large nursery than in small nursery. How-
ever, the throughput of garbage collection increases in large
nursery because it gives more time for objects in nursery to
die and less objects that will be garbage soon are copied to
mature space; it reduces the number of major collections.
In short, high throughput is in conflict with small collection
time for deciding the size of nursery.

3. Proposed Idea

The basic generational copying collectors concentrate on
newly created objects that have a much lower survival rate
than older objects by allocating them to the nursery and col-
lecting only the nursery mostly [14], [9]. It is an efficient
strategy for high throughput and small pause time. How-
ever, it can achieve the best efficiency in server applications
if it is adapted to the behavior of server applications.

In Section 1, we propose that the architecture and behav-
ior of server applications differ from those of other applica-
tions. Main threads such as a dispatcher thread are respon-
sible for server management while worker threads are for
processing requests. They have two different characteris-
tics in the memory management aspect: the object lifetime
pattern and the allocation rate. First of all, main threads
usually make long-lived objects while worker threads allo-
cate temporal objects for a request. In result, objects that
worker threads used are likely to be garbage. In addition,
worker threads make many objects for processing requests
so that the object allocation rate of worker threads is typi-
cally higher than that of main threads.

Current generational collectors allocate and collect all
objects in one nursery regardless of these features. Short-
lived objects of worker threads is mixed with long-lived ob-
jects of main threads and the amount of live objects is pro-
portional to the size of nursery due to the long-lived objects.
To achieve small collection time, the size of heap should be
kept below some threshold. In result, garbage collectors

2

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

Figure 2. Thread-aware generational copying
collector

cannot attain the best throughput due to the restricted size
of nursery.

To exploit different object lifetime patterns of threads,
different collection policies can be applied to each kind of
threads. First of all, worker threads make temporal objects
and the amount of live objects at a time is almost constant
regardless of the amount of objects they allocated; only ob-
jects related to currently processed requests are live. In this
case, the throughput of collection increases as the heap be-
comes large but the collection time is almost constant ir-
respective of the size of heap. Therefore the appropriate
collection policy for worker threads is to allocate objects to
a large heap in order to achieve good throughput.

On the other hand, main threads usually make long-lived
objects. For that reason, the amount of live objects is pro-
portional to the size of heap and the collection time as well
as the throughput is proportional to the size of heap. To keep
the pause time of collection below an acceptable value, the
size of heap should be less than some threshold even though
the throughput of garbage collection is not the best it could
get. However, the throughput is not reduced much because
of the lower allocation rate of main threads; even if the heap
for main threads is small, it is filled at the slow rate and
gives more time for objects to die. Consequently the proper
collection policy for main threads is to allocate objects of
main threads to a small fixed size heap to guarantee small
pause time.

In short, applying different collection policies to threads
according to the object lifetime pattern and the allocation
rate, garbage collection becomes more efficient, and in re-
sult, provides higher throughput and smaller response time
of server applications.

3.1 Thread-aware Collector Architecture

There are several ways to implement the proposed idea.
Our Thread-aware collector(TA) is designed to be simple
and easy to understand and analyze for the purpose of this
paper: to prove the existence of different object lifetime
patterns and allocation rate of threads in server applica-
tions and to show the effect of exploiting these features for
garbage collection.

First of all, in Figure 2, our collector is basically genera-
tional copying collector and uses two nurseries for threads.

One is a fixed size nursery (fixed nursery or FN) for main
threads and the other is a variable size nursery (variable
nursery or VN) for worker threads. To apply the collection
policies discussed before, the size of fixed nursery is set to
an appropriate value to limit maximum pause time and the
variable nursery is managed similarly to the nursery of the
Appel style collector [3] to make it as large as possible. The
size of variable nursery is at least larger than quarter of the
entire heap because the amount of live objects in mature
space can grow up to at most half of the entire heap; if it
exceeds half of the heap, a major collection begins. The
size of fixed nursery is set to an appropriate value to limit
maximum pause time.

Deciding collection policy of a thread can be performed
by JVM automatically and dynamically, but in our collector,
we let programmers of a server application decide the policy
statically by setting a boolean value in the constructor of
Thread class. This is simple but programmers should figure
out lifetime patterns of threads by experiments or intuition.
This mechanism works well as shown in Section 5.

Sequence of collection is similar to basic collectors.
When the fixed nursery or the variable nursery is full, mi-
nor collection is initiated for the exhausted nursery. If the
empty space of mature space is not enough after minor col-
lection, major collection is needed. However, the major col-
lection is performed in next collection in our collector while
basic collectors start major collection immediately. This is
because variable nursery should be collected before major
collection to empty the space of variable nursery for major
collection. In next collection, minor collection is performed
for both two nurseries and then major collection begins.

4. Implementation

There are several changes applied to the basic collectors
and Thread-aware collector from original Jikes RVM GC
architecture. In the original architecture, a large object heap
is used to allocate larger objects than 2KB to reduce copy-
ing cost of generational copying collector. Objects in the
large object heap are managed by mark-and-sweep method
instead of copying collection . For our purposes objects
should be allocated separately according to threads and only
one large object heap is not appropriate for our approach.
Accordingly it is only used to allocate stacks of threads,
which is a restriction of the Jikes RVM architecture1, and
all objects are allocated to the heap managed by genera-
tional copying collectors.

The original architecture considers shared-memory mul-
tiprocessor (SMP) configurations so that all garbage collec-
tors are parallel collectors. Jikes RVM multiplexes Java

1The Jikes RVM is written in Java and all objects for the virtual ma-
chine are Java objects. So stacks of threads are also Java objects and they
can be garbage collected.

3

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

Figure 3. The architecture of Haboob web server

threads on virtual processors that are implemented on op-
erating system threads. To reduce synchronization cost in
allocation, a chunk, a large piece of nursery, is provided to
each virtual processor. Objects are allocated to the chunk
locally in a virtual processor and only the allocation of a
chunk needs synchronization.

This approach has the internal fragmentation problem
like paging system of virtual memory system. The prob-
lem is not serious in the original architecture because large
objects are allocated to the large object heap. In our archi-
tecture, however, all objects including large objects have to
be allocated in chunks and the ratio of fragmentation in-
creases. We use direct allocation without chunk to avoid
fragmentation and experiments are performed in single pro-
cessor environment. Parallel version of Thread-aware col-
lector is more complicated and this is a future work.

5. Experiments

5.1 Benchmark configurations

To evaluate the Thread-aware collector with server appli-
cations, we choose Haboob, a SEDA-based web server, as a
benchmark server [15] . The architecture is an event-driven
architecture with multiple stages. Figure 3 shows its stages.

Each stage has its own threads so that it makes the differ-
ent object lifetime patterns of threads more clearly. Among
the stages, by intuition, Socket stage for accepting and man-
aging persistent connections and Cache stages for handling
cache data of static pages may make more long-lived objects
than the other stages. On the other hand, HttpParse stage
that parses each request and Dynamic stage that generates
dynamic contents may make many temporal objects. Ac-
cordingly Socket and Cache stages use fixed nursery while
the other stages use variable nursery. The Cache stages
manage fixed size cache for static pages.

We have chosen the load model from the SPECweb99
benchmark suite [10] as the basis for our measurements,
which is similar to the model used for the Haboob evalu-
ation [15] . We use static pages from SPECweb99 load,

which constitute 70% of the SPECweb99 load mix. A dy-
namic page used in these experiments is borrowed from the
SEDA bottleneck test; it makes several random numbers
and generates a sum of them and returns an 8KB response
to the client. We keep the static Web page file set fixed at
3.31 GB of disk files, corresponding to a SPECweb99 target
load of 1000 connections. Files range in size from 102 to
921600 bytes and are accessed using a Zipf-based request
distribution mandated by SPECweb99. More details can be
found in [10] .

There are several parameters for performance of GC. The
throughput of a collection is the amount of reclaimed space
per unit collection time for the collection (KB/ms). Copy
ratio of a collection represents ratio of the amount of copied
objects for the size of region that is collected. It is inversely
proportional to the throughput because collection time is
proportional to the amount of copied objects. For the col-
lection time of garbage collection, only that of minor col-
lection is comparable because major collection of Thread-
aware collector is performed by the same method with that
of basic collectors.

5.2 Evaluations

5.2.1 Performance comparison with various size of
heap

We compare the throughput and response time of basic col-
lectors (Fixed Nursery and Variable Nursery) and Thread-
aware collector. The number of collection is small for
large heap so that more requests are used to cause enough
garbage collection to show the average behavior. 700,000
requests are used for 500MB heap and 1,000,000 requests
for 600MB heap.

In Figure 4(a), the overall throughput of Thread-aware
collector is about 1.4 - 1.7 times greater than that of Fixed
Nursery collector and about 1.1 - 1.4 times greater than
that of Variable Nursery collector. It is from the improved
throughput of minor collection in Thread-aware collector,
as shown in Figure 4(b). The throughput of minor collec-
tion for the variable nursery in Thread-aware collector is 2.1

4

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

Table 1. Performance of web servers and collectors
Collectors and Performance of Garbage Collection Performance of

Heap Configurations GC Count copy ratio (%) Pause Time (ms) Web Server
H Collector NH Total FN VN M FN VN M Nursery (FN, VN) 90% RT TP

400 FN 50 108 73 0 35 22.3 0 77.7 57.2 1615 358.4
VN 124 0 108 16 0 26.5 61.0 58.1 1580 370.8
TA 30 86 50 28 8 27.5 6.3 56.8 57.5 (61.3, 50.8) 1461 380.1

500 FN 70 115 95 0 20 16.0 0 64.5 62.4 1639 347.5
VN 120 0 110 10 0 20.7 48.8 63.1 1619 351.3
TA 40 99 59 34 6 22.5 5.1 45.8 64.4 (71.0, 53.1) 1512 363.2

600 FN 100 108 94 0 14 11.4 0 58.4 65.9 1767 312.9
VN 114 0 107 7 0 16.5 40.9 68.0 1783 315.4
TA 50 109 65 39 5 18.1 4.3 38.5 71.3 (80.0, 57.0) 1746 320.2

* FN : Fixed Nursery, VN : Variable Nursery, M : Major collection, TA : Thread-aware, CA : Copied Amount
* NH : The size of nursery (MB), 90% RT :90th percentile of response time (ms), TP : Throughput (reqs/s), H : The size of

heap (MB)

- 2.8 times greater than that of Fixed Nursery collector or
Variable Nursery collector and it makes the overall through-
put of Thread-aware collector better than those of the other
collectors, even though the throughput for the fixed nurs-
ery in Thread-aware collector is lower than that of the other
collectors. Notice that the throughput for the fixed nurs-
ery is almost constant for various heap sizes because the
size of the fixed nursery is restricted to limit the pause time
caused by the minor collection. It makes the collection time
of minor collections small so that Thread-aware collector
has high throughput while its collection time of minor col-
lections is almost the same with that of other collectors, as
shown in Table 1. In addition, the collection time of Thread-
aware collector is smaller than that of other collectors on
condition of similar throughput. The throughput of Thread-
aware collector for 400MB heap is similar to that of other
collectors for 500MB heap, but its average collection time
is smaller by 8.4 - 10 % than the time of other collectors.

The improved throughput affects the performance of
server applications. The performance of Haboob web server
using each collector is shown in Table 1. Many factors such
as I/O bandwidth affect the performance of server applica-
tions so that the effect of improved garbage collection does
not appear apparently. However, the throughput of server
using Thread-aware collector is improved by 2.0 - 6.0%
compared with that of server using the other collectors.

For our purpose, the maximum response time should be
compared but it depends on major collection. To examine
the effect of improved minor collections, we compared 90th
percentile of response time. In Table 1, the response time by
Thread-aware collector is reduced by 1.2 - 10.5% compared
to servers using the other collectors while the collection
time of a minor collection for basic collectors and Thread-
aware collector is similar with one another. The reason is

(a) Throughput of garbage collections

(b) Throughput of Minor Collections

Figure 4. Throughput of each collector for var-
ious heap size

5

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

(a) Throughput of garbage collection

(b) Throughput of minor collections

Figure 5. Throughput of each collector for var-
ious types of workload

that the number of garbage collection for Thread-aware col-
lector is reduced and the time interval between garbage col-
lection becomes long.

5.2.2 Performance comparison with various workload

In this experiment, we examine the performance of collec-
tors for various types of workload that have the different ra-
tio of dynamic page requests. In Figure 5(a), the throughput
of Thread-aware collector is increased as the ratio becomes
large while that of the other collectors is almost the same.
At the ratio of 0.3, the throughput of Thread-aware collector
is 1.5 times better than that of Fixed Nursery collector, but
it is 2.0 times better at the ratio of 0.8. This improvement
comes from the more efficient minor collection of variable
nursery.

In Figure 5(b), the throughput for variable nursery is
increased while that of the other collector is not changed
as the ratio becomes large. This implies that the lifetime
pattern of threads that Thread-aware collector exploits is
more distinct for larger dynamic requests ratio. In addi-

Figure 6. Number of minor collections for var-
ious types of workload

tion, as shown in Figure 6, only the number of minor col-
lections for variable nursery increases for the large ratio in
Thread-aware collector while the number of minor collec-
tions for fixed nursery is nearly constant. It means the per-
formance of minor collection for variable nursery has more
weight in total performance for large ratio of dynamic re-
quests. Therefore, we expect that Thread-aware collector
will work better for web application servers (WAS) than for
web servers servicing only static pages.

6. Related Work

Some JVMs use small thread-local nurseries but their
purpose is to avoid excessive synchronization among
threads during allocation of objects [12], [4]. On the other
hand there is an approach that one heap is assigned to one
thread and only exhausted heap is collected to avoid unnec-
essary stopping of other threads [11], [7]. In this scheme,
objects in each thread-local heap should be local to the
heap; they should not be used by objects in the other heaps
and should not have references toward the other heap. To
pick out global objects that is used by two or many threads,
complex mechanisms such as static escape analysis [11] or
runtime analysis [7] are used.

Our collector uses several heaps that are similar with
thread-local heaps but assigns each heap for threads that
have similar object lifetime patterns. In addition, it applies
different strategies for each heap according to the charac-
teristics of the heap to improve the efficiency of garbage
collection. The thread-local heap approach do not care
of differences of object lifetime and allocation rate among
threads. If our idea combines with the thread-local heap,
more efficient memory management is possible: scheduling
collections for heaps and choosing the heap that has large
garbage and few live objects.

There are many approaches to figure out and exploit life-
time patterns of objects. One approach of them is pretenur-

6

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

ing [6], [5], [8] . In the approach, the memory manager
tries to find out which objects have long lifetimes and al-
locate such objects directly in the mature space. Cheng et.
al. [6] use profiling to determine allocation sites that tend
to allocate long-lived objects. This profiling is then used
to classify allocation sites. Harris [8] uses dynamic sam-
pling to predict the lifetimes of objects. Sampling reduces
the cost of obtaining statistics so that it avoids the need for
a separate profiling phase and allows pretenuring decisions
changed during runtime. Finally, Blackburn et. al. [5] im-
prove pretenuring by combining profiling results from mul-
tiple applications for common library code with results for
objects allocated by the runtime code.

Our idea and the pretenuring have a common property of
using lifetime patterns of objects. On the other hand, while
the granularity of lifetime patterns in pretenuring approach
is an allocation site, that of our idea is a thread, based on
the observation of the server architecture and behavior. In
addition, our idea uses the lifetime patterns to allocate ob-
jects that have similar lifetime in one heap while pretenur-
ing uses them to allocate long-lived objects directly to the
mature space. Our collector shows that special management
for short-lived objects is also as important as pretenuring of
long-lived objects.

7. Conclusions

We propose and prove the different object lifetime pat-
terns according to threads in server applications. Our
Thread-aware collector exploits the patterns to gather short-
lived objects altogether and applies different policies to
each heap. As a result the throughput of GC is up to 1.7
times greater than that of the generational copying collector
with the similar collection time. For the pause time, it is
smaller by 8.4 - 10 % given the similar throughput. Con-
sequently it will help server applications achieve both high
throughput and small response time.

References

[1] ISMM 2000, volume 36(1) of ACM SIGPLAN Notices,
Minneapolis, Minnesota, USA, 2001. ACM Press.

[2] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke,
P.Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove,
M. Hind, S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mer-
gen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C.
Shepherd, S. E. Smith, V. C. Sreedhar, H. Srinivasan, and
J. Whaley. The jalape��o virtual machine. IBM System Jour-
nal, 39(1), February 2000.

[3] A. W. Appel. Simple generational garbage collection and
fast allocation. Software Practive and Experience, 19(2),
1989.

[4] BEA Systems, Inc. BEA WebLogic
JRockit - The Server JVM. Available at
http://www.bea.com/products/weblogic/jrockit/.

[5] S. M. Blackburn, S. Singhai, M. Hertz, K. S. McKinley, and
J. B. Moss. Pretenuring for java. In ACM Conference on
Object-Oriented Systems, Languages and Applications, vol-
ume 36(10) of ACM SIGPLAN Notices, Tempa, FL, 2001.
ACM Press.

[6] P. Cheng, R. Harper, and P. Lee. Generational stack col-
lection and profile-driven pretenuring. In Proceedings of
SIGPLAN’98 COnference on Programming Languages De-
sign and Implementation, volume ACM SIGPLAN Notices,
pages 162–173, Montreal, 1998. ACM Press.

[7] T. Domani, G. Goldshtein, E. K. Kolodner, and E. Lewis.
Thread-local heaps for java. In Proceedings of the Third
International Symposium on Memory Management, ISMM
’02, volume 37 of ACM SIGPLAN Notices, Berlin, Ger-
many, 2002. ACM Press.

[8] T. L. Harris. Dynamic adaptive pre-tenuring. In Proceedings
of the Second International Symposium on Memory Man-
agement, ISMM 2000 [1].

[9] B. Hayes. Using key object opportunism to collect old ob-
jects. In ACM Conference on Object-Oriented Systems, Lan-
guages and Applications, volume 26(11) of ACM SIGPLAN
Notices, Phoenix, Arizona, USA, 1991. ACM Press.

[10] Standard Performance Evaluation Corporation.
The SPECweb99 benchmark. Available at
http://www.spec.org/osg/web99/.

[11] B. Steensgaard. Thread-specific heaps for multi-threaded
programs. In Proceedings of the Second International Sym-
posium on Memory Management, ISMM 2000 [1].

[12] Sun Microsystems, Inc. The Java
HotSpotTMVirtual Machine, v1.4.1. Available at
http://java.sun.com/products/hotspot/.

[13] Sun Microsystems, Inc. JavaTM2 Platform, Enterprise Edi-
tion. Available at http://java.sun.com/j2ee/.

[14] D. Ungar. Generation scarvenging: A non-disruptive high
performance storage reclamation algorithm. In Preceedings
of the ACM SIGSOFT/SIGPLAN Software Engineering Sym-
posium on Practical Software Development Environment,
Pittsburgh, Pennsylvania, 1984. ACM Press.

[15] M. Welsh, D. Culler, and E. Brewer. SEDA: An architecture
for well-conditioned, scalable internet services. In Proceed-
ings of the eighteenth ACM symposium on Operating sys-
tems principles, Banff, Alberta, Canada, 2001. ACM Press.

7

Proceedings of the 2004 International Symposium on Applications and the Internet (SAINT’04)

0-7695-2068-5/04 $20.00 © 2004 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

